The correct option is B Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
∫nπ0∣∣∣sinxx∣∣∣dx=∫π0∣∣∣sinxx∣∣∣dx+∫2ππ∣∣∣sinxx∣∣∣dx+...+∫nπ(n−1)π∣∣∣sinxx∣∣∣dx
=I1+I2+I3+...+In(say)
Putting x=t+π,t+2π,...,t+(n−1)π respectively in I2,I3,...,In
=∫π0sinxxdx+∫π0∣∣∣sin(t+π)t+π∣∣∣dt+∫π0∣∣∣sin(t+2π)t+2π∣∣∣dt+...
=∫π0sinxxdx+∫π0sintt+πdt+∫π0sintt+2πdt+...so on (∵sinxx>0in(0,π))
=∫π0sinxxdx+∫π0sinxx+πdx+∫π0sinxx+2πdx+...
(merely cbanging the variable)
=n∑r=1∫π0sinx(n+(r−1)π)>n∑r=1∫π0sinx(π+(r−1)π)
=n∑r=1∫π0sinxπrdx=n∑r=12πr=2π[1+12+13+...+1n]