The correct option is A Both Assertion and Reason are individually true and Reason is the correct explanation of Assertion.
∵△=√s(s−a)(s−b)(s−c)
=√s8(b+c−a)(c+a−b)(a+b−c)
∵ sum of two sides is always greater then the third side.
∴b+c−a,c+a−b,a+b−c>0
⇒(s−a)(s−b)(s−c)>0
Let s−a=x,s−b=y,s−c=z
Now,
x+y=s−a+s−b
=2s−(a+b)
=2s−(2s−c)
=2s−2s+c=c
∴x+y=c
Again y+z=s−b+s−c
=2s−(b+c)
=2s−2s−a=a
∴y+z=a
and z+x=s−c+s−a
=2s−(c+a)
=2s−2s−b=b
∴z+x=b
∵A.M≥G.M
⇒x+y2≥√xy,
y+z2≥√yz and z+x2≥√zx
⇒(x+y)(y+z)(z+x)8≥xyz
⇒abc8≥(s−a)(s−b)(s−c)
⇒s(abc)8≥s(s−a)(s−b)(s−c)
⇒(a+b+c)abc16≥△2
∴△≤14√(a+b+c)abc