Assertion (A): lf x+y=12 then the minimum value of x2+y2 is 72.
Reason (R): lf x+y=k, then the maximum value of xy is k2.
s=x2+(12−x)2
dsdx=2x+2(12−x)(−1)
dsdx=0 at x=6 y=6
s=x2+y2
=72p=x(k−x)
dpdx=(k−x)−x
dpdx=0
⇒x=k2 y=k2
p=k24