Assertion :sin52o+sin78o+sin50o=4cos26ocos39ocos25o. Reason: If A+B+C=π, then sinA+sinB+sinC=4cos(A2)cos(B2)cos(C2).
Reason:
A+B+C=π⇒A+B=π−CsinA+sinB+sinC=sinA+sinB+sin(π−(A+B))=sinA+sinB+sin(A+B)=2sin(A+B2)cos(A−B2)+2sin(A+B2)cos(A+B2)=2sin(A+B2)(cos(A−B2)+cos(A+B2))=2sin(π2−C2)(2cosA2cosB2)=4cosA2cosB2cosC2
Assertion:
As 58+72+50=180
U\sin g sinA+sinB+sinC=4cosA2cosB2cosC2
We get,
sin58+sin72+sin50=4cos29cos36cos25