The correct option is
A Statement -1 is True, Statement -2 is true; Statement-2 is a correct explanation for Statement-1
Let the equation of the tangent be
y=mx+cThen it passes through 17,7
Hence
7=17m+c
c=7−17m
Hence the equation of the line will be
y=mx+7−17m
Now the equation of the circle is x2+y2=169
Substitution of the equation of the line in the circle yields
x2+(m(x−17)+7)2=169
x2+m2(x−17)2+14m(x−17)+49=169
x2+m2(x−17)2+14m(x−17)=120
x2(1+m2)−34m2x+14mx+289m2−238m=120
x2(1+m2)+x(14m−34m2)+289m2−238m−120=0
b2−4ac
=m2(14−34m)2−4(1+m2)(289m2−238m−120)
=4[m2(7−17m)2−(1+m2)(289m2−238m−120)]
=4[m2(289m2−238m+49)−(1+m2)(289m2−238m−120)]
=4[289m4−238m3+49m2−289m4+238m3+120m2−289m2+238m+120]
=4[169m2−289m2+238m+120]
=4[−120m2+238m+120]
=4(m−125)(m+512)
Hence
b2−4ac=0 implies
m1=125 and m2=−512
Hence
m1.m2=−1
Thus the tangents are mutually perpendicular.
Therefore the equation of the tangents will be
y=125x−1695
12x−5y=169 ...(i)
y=−512x+16912
5x+12=169 ...(ii)
Now if tangents are drawn from the circle of radius 2R to a circle of radius R such that the circles are concentric then the tangents are mutually perpendicular.
Hence correct option is A