Assertion :The value of θ,0<θ<π2, satisfying the equation 6∑m=1cosec[θ+(m−1)π4]cosec[θ+mπ4]=4√2 are π12 and 5π12 Reason: If tanθ+cotθ=4,0<θ<π2, then θ=π12 or 5π12.
In statement -1, L.H.S.
is equal to
6∑m=1sin[θ+mπ4−(θ+(m−1)π4)]sin[θ+(m−1)π4]sin[θ+mπ4]sinπ4
√26∑m=1(cos[θ(m−1)π4]−cot[θ+mπ4])
√2(cotθ−cotθ(θ+π4)+cot(θ+π4)..........cot(θ+6π4))
√2[cotθ−cot(θ+3π2)]=√2[cotθ+tanθ]=4√2 (given)
⇒cotθ+tanθ=4⇒tan2θ−4tanθ+1=0
⇒tanθ=2±√3
We have tan(45o±tan30o)=1±1√31∓1√3=√3±1√3∓1=4±√32
=2±√3
So from (1) tanθ=tan(45o±30o)
⇒θ=15o or 75o or
θ=π12 or 5π12
Showing that statement -1 and 2 both are true and
statement 2 leads to statement 1.