From part(i),|A1Ar|=|z1||1−e2(r−1)πi/n|
=|1−e2(r−1)πi/n|[∵|z1|=1]
Hence |A1A2|⋅|A1A3|.......|A1An|
=|1−e2πi/n||1−e4πi/n|.......|1−e2(n−1)πi/n|.....(1)
Sincee2πi/n,e4πi/n.....e2(n−1)πi/narethen−1
imaginary, nth root of unity, we have the identity
zn−1≡(z−1)(z−e2πi/n)(z−e4πi/n)......(z−e2(n−1)πi/n)
or zn−1z−1≡(z−e2πi/n)(z−e4πi/n)......(z−e2(n−1)πi/n)
or1+z+z2+....+zn−1≡(z−e2πi/n)......(z−e2(n−1)πi/n)
Putting z =1 in the above identity, we get
n=(1−e2πi/n)(1−e4πi/n)......(1−e2(n−1)πi/n)
Hence n=|n|=|1−e2πi/n||1−e4πi/n|......|1−e2(n−1)πi/n|....(2)
From (1) and (2), we get
∴|A1A2|⋅|A1A3|.......|A1An|=n