Assuming ideal behaviour, the magnitude of log K for the following reaction at 25oC is x×10−1. The value of x is _____(integer answer)
3HC≡CH(g)⇌C6H6(l)
[Given:ΔfG0(HC≡CH)=−2.04×105Jmol−1;
ΔG0f(C6H6)=−1.24×105Jmol−1;R=8.314JK−1mol−1]
Answer : 855
3CH≡CH(g)⇌C6H6(l)
ΔG0=ΔG0f(C6H6)−3ΔG0f(CH≡CH)
=−1.24×105−3(−2.04×105)
=4.88×105J mol−1
ΔG0=−RT ln K
=−2.303RT log K
log K=−4.88×1052.303×8.314×298
|log K|=4.88×1052.303×8.314×298
|log K|=85.5
x×10−1=85.5
x = 855