Assuming that x, y, z are positive real numbers, simplify each of the following:
(i) (√x−3)5
(ii) √x3y−2
(iii) (x−2/3y−1/2)2
(iv) (√x)−2/3√y4 ÷ √xy−1/2
(v) 5√243x10y5z10
(vi) (x−4y−10)5/4
(vii) (√2√3)5(67)2
(i) (√x−3)5=(x−32)5=x−32×5 =x−152=1x152 {∵(xm)n=xmnx−m=1xm}
(ii) √x3y−2=(x3y−2)12=x32.y−22=x32.y−1 {∵(xm)n=xmnand x−m=1xm}=x32y
(iii) (x−23y−12)2=x−23×2.y−12×2=x−43.y−1=1x43y {∵(xm)n=xmnx−m=1xm}
(iv) (√x)−2/3√y4 ÷ √xy−1/2=(x12)−23(y12)4÷x12(y−12)12=x12×(−23).y12×4÷x12.y−12×12=x−13y2 ÷x12.y−14=x−13−(12)y2−(−14)=x−2−36.y2+14=x−56.y94=y94x56
(v) 5√243x10y5z10 = (243x10y5z10)15=(35.x10.y5.z10)15=35×15.x10×15.y5×15.z10×15=3x2yz2
(vi) (x−4y−10)5/4 = (y10x4)54 (∵x−m=1xm)=y10×54x4×54=y252x5
(vii) (√2√3)5(67)2 =(23)52×3649=(23)2×√2√3×3649=16√249√3=√2×16×16√3×49×49=√512√7203=(5127203)12