The Arrhenius equation is,
log10k2k1=Ea2.303×R[T2−T1T1T2]
Given: k1=9.5×10−5s−1; k2=1.9×10−4s−1;
R=8.314 J mol−1 K−1;
T1=407 K and T2=420 K
Substituting the values in Arrhenius equation
log101.9×10−49.5×10−5=Ea2.303×8.314[420−407420×407]
Ea=75782.3 J mol−1
Applying now logk1=logA−Ea2.303RT1
log9.5×10−5=logA−75782.32.303×8.314×407
or logA9.5×10−5=75782.32.303×8.314×407=9.7246
A=5.04×105s−1