At a point on a level plane, a tower subtends an angle α and a flag-staff of height a metres standing on top of the tower subtends an angle β. The height of the tower in metres is
tan α=hd
tan(α+β)=h+ad
tanαtan(α+β)=hh+a
tan(α+β)tanα=h+ah
tan(α+β)−tanαtanα=ah
h=a tanαtan(α+β)−tanα
h=asinαcosα.cosαcos(α+β)sin(α+β)cosα−cos(α+β)sinα
h=a sinα cos(α+β)sinβ