At a point on a level plane, a vertical tower subtends and angle α and a pole of height h meters at the top of the tower subtends an angle β. Show that the height of the tower is h sinβ.cosαcos(α+β)
Open in App
Solution
In ΔACP,tanα=hy⇒y=htanα....(1) In ΔADP,tan(α+β)=h+xy⇒y=h+xtan(α+β)....(2) From (1) & (2) htanα=h+xtan(α+β) ⇒h+xh=tan(α+β)tanα⇒xh=sin(α+β)cos(α+β).cosαsinα−1 xh=sin(α+β).cosα−cos(α+β).sinαcos(α+β).sinα⇒xh=sin(α+β−α)cos(α+β).sinα⇒=hsinβ.cosαcos(α+β)