The correct option is
B 2π3x=a(2cost−cos2t)
⇒x=2acost−acos2t
Differentiating above equation w.r.t. t, we have
dxdt=ddt(2acost)−ddt(acos2t)
⇒dxdt=2asint−(asin2t×2)
⇒dxdt=2asint−2asin2t.....(1)
y=a(2sint−sin2t)
⇒y=2asint−asin2t
Differentiating above equation w.r.t. t, we have
dydt=ddt(2asint)−ddt(asin2t)
⇒dydt=2a(−cost)−a(−cos2t×2)
⇒dydt=2acos2t−2acost.....(2)
∴dydx=dydt×dtdx
⇒dydx=dydt×1(dxdt)
From eqn(1)&(2), we have
dydx=(2acos2t−2acost)×1(2asint−2asin2t)
⇒dydx=cos2t−costsint−sin2t
Given that the tangent is parallel to x-axis, i.e., slope will be zero.
∴dydx=0
⇒cos2t−costsint−sin2t=0
∵sint−sin2t≠0
∴cos2t−cost=0
⇒2cos2t−1−cost=0[∵cos2θ=2cos2θ−1]
⇒2cos2t−cost−1=0
⇒2cos2t−2cost+cost−1=0
⇒2cost(cost−1)+1(cost−1)=0
⇒(cost−1)(2cost+1)=0
⇒cost−1=0 or 2cost+1=0
⇒cost=1 or cost=−12
⇒t=0 or t=2π3
∴ Difference between the tangents correspobnding to the values of t =2π3−0=2π3
Hence the tangents are differing each other by 2π3.
Hence the required answer is (A)2π3.