At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A is
A
4 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8 cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D 8 cm Given-
AB is the diameter of a circle with center O.
CD is a chord and CD∥AXY which is a tangent to the circle at A intersecting AB at N.
AN=8cm and OA=OC=5cm ...((radius)
To find out-
The length of CD
Solution-
The line AXY∥CD and AXY is a tangent to the circle at A.
∴AB⊥AXY & CD. i.e ∠OAY=90O=∠OED
∴ΔOEC is a right angled one with OC as hypotenuse.