At the foot of a mountain the elevation of its summit is 45∘, after ascending 1000 m towards the mountain up a stop of 30∘ inclination, the elevation is found to be 60∘. Find the height of the mountain :
1.366 km
In the figure, AB represents the mountain of height h, say. In ΔOCE,
sin 30∘=CEOC
12=CE1000
CE=500
cos 30∘=OEOC
√32=OE1000
OE=500√3
In ΔAOB,
tan 45∘=ABOA
⇒OA=AB
∴CD=EA=OA−OE=h−500√3
BD=AB−AD=AB−CE=h−500
InΔBCD,
tan 60∘=BDCD
√3=h−500h−500√3
√3=h−500h−500√3
√3h−1500=h−500
h(√3−1)=1000
h=1000√3−1×√3+1√3+1
h=1000)(√3+1)3−1
h=500(√3+1)
h=500×2.732=1366 m=1.366 km
Thus, the height of the mountain is 1.366 km.