At the foot of a mountain the elevation of its summit is 45∘; after ascending 1000 m towards the mountain up a slope of 30∘ inclination, the elevation is found to be 60∘. Find the height of the mountain.
DE=1000 sin 30=1000×12=500 m=FBEC=1000 cos 30=1000×√32=500√3mLet AF=x mDF=x√3m=BE
We know,From ΔABC,⇒ 1=AF+FBBE+FC⇒ 1=x+500x√3+500√3⇒ x√3+500 √3=x+500⇒ x+1500=x√3+500√3⇒ 1500−500√3=x √3−x⇒ 500 √3 (√3−1)=x(√3−1)∴ x=500 √3 mThe height of the triangle is AB=AF+FB=500 (√3+1)m