Let (x1,y1) be the point of intersection
∴y1=ax1 ...... (1)
y1=bx1 ........ (2)
From (1) and (2), we have
⇒ax1=bx1⇒x1=0 [∵a≠b]
when x1=0,y1=a0=1
Hence the point of intersection is (0,1)
consider y=ax and consider y=bx
Diff. w.r.to x and Diff. w.r.to x
dydx=axloga and dydx=bxlogb
m1=(dydx)at(0,1) and m2=(dydx)at(0,1)
=a0loga and =b0logb
=loga and =logb
Let θ be the angle between the given curves
tanθ=∣∣∣m1−m21+m1m2∣∣∣=∣∣∣loga−logb1+logalogb∣∣∣⇒θ
=tan−1[∣∣∣loga−logb1+logalogb∣∣∣]