At what point is the slope of the curve y=−x3+3x2+9x−27 maximum? Also, find the maximum slope.
We have, y=−x3+3x2+9x−27∴dydx=−3x2+6x+9=Slope of tangent to the curveNow,d2ydx2=−6x+6forddx(dydx)=0.−6x+6=0⇒x=−6−6=1∴ddx(d2ydx2)=−6<0
So, the slope of tangent to the curve is maximum when x = 1
for x=1,(dydx)x=1=−3(12)+6(1)+9=12.
Which is the maximum slope.
Also, for x=1,y=−13+3.12+9.1−27=−1+3+9−27=−16