The correct option is D (1,2);(1,−2)
x2+y2−2x−3=0..(1)
Differentiating w.r.t x
2x+2ydydx−2=0⇒dydx=1−xy
For slope of tangent to be zero dydx=0⇒x=1
Substituting x=1 in (1). we get
1+y2−2−3=0⇒y=4⇒y=±2
Therefore, the points are (1,2),(1−2)
Hence, option 'D' is correct.