The correct option is A (π2,0)
y=cos(x+y) (−2π≤x≤2π)
⇒dydx=−sin(x+y)(1+dydx)
⇒dydx(1+sin(x+y))=−sin(x+y)
⇒dydx=−sin(x+y)1+sin(x+y)
Given tangent is parallel to the line, x+2y=0
⇒dydx=−sin(x+y)1+sin(x+y)=−12
2sin(x+y)=1+sin(x+y)
sin(x+y)=1⇒cos(x+y)=0⇒x+y=π2
Also the point lies on the given curve,
y=0⇒x=π2
Thus the point is, (π2,0)
Hence, option 'A' is correct.