Given curve:
x2+y2−2x−4y+1=0...(1)
Differentiating both sides w.r.t x, we get
2x+2ydydx−2−4dydx=0
⇒dydx(y−2)=1−x
⇒dydx=1−xy−z...(2)
Slope,dydx=tanπ2=10
⇒1−xy−z=10 [From eq. (2)]
⇒y−2=0
⇒y=2...(3)
⇒x2+4−2x−8+1=0
⇒x2−2x−3=0
⇒(x−3)(x+1)=0
Hence, the points are (3,2) and (−1,2)
Hence, at (3,2) and (−1,2) on the given curve, the tangents are parallel to the y-axis.