wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

At what points on the curve x2+y22x4y+1=0 are the tangents parallel to the y axis?

Open in App
Solution

Given equation of curve which is
x2+y22x4y+1=02x+2ydtdx24dydx=0dydx(2y4)=22xdydx=2(1x)2(y2)
Since, the tangents are parallel to the axis i.e., tanθ=tan90=dydx1xy2=10y2=0y=2
For y = 2 from Eq. (i), we get
x2+222x4×2+1=0x22x3=0x23x+x3=0x(x3)+1(x3)=0(x+1)(x3)=0x=1,x=3
So, the required points are (-1, 2) and (3,2).


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon