At what points on the curve x2+y2−2x−4y+1=0 are the tangents parallel to the y axis?
Given equation of curve which is
x2+y2−2x−4y+1=0⇒2x+2ydtdx−2−4dydx=0⇒dydx(2y−4)=2−2x⇒dydx=2(1−x)2(y−2)
Since, the tangents are parallel to the axis i.e., tanθ=tan90∘=dydx∴1−xy−2=10⇒y−2=0⇒y=2
For y = 2 from Eq. (i), we get
x2+22−2x−4×2+1=0⇒x2−2x−3=0⇒x2−3x+x−3=0⇒x(x−3)+1(x−3)=0⇒(x+1)(x−3)=0∴x=−1,x=3
So, the required points are (-1, 2) and (3,2).