wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ax+by+cz=k
a2x+b2y+c2z=k2
a3x+b3y+c3z=k3
Solve by Crammer's rule

Open in App
Solution

ax+by+cz=k
a2x+b2y+cz=k2
a3x+b3y+cz=k3

using cramer's rule,
x=D1D,y=D2D,Z=D3D

where,
D=abca2b2c2a3b3c3=abc111abca2b2c2

=abc010abbcba2b2b2c2b2=abc(ab)(cb)0101b1a+bb2c+b

=(ab)(cb)(a+bbc)abc

=(ab)(bc)(ca)abc

D1=kbck2b2c2k3b3c3=kbc111kbck2b2c2=kbc010kbbcbk2b2b2c2b2

kbc(kb)(cb)0101b1k+bb2c+b

=kbc(kb)(cb)(k+bcb)

=kbc(kb)(bc)(ck)

x=D1D=kbc(kb)(bc)(ck)kbc(ab)(bc)(ca)

=k(kb)(bc)(ck)a(ab)(bc)(ca)

D2=akca2k2c2a3k3c3=akc111akca2k2c2=akc010abkcka2k2k2c2k2

akc(ak)(ck)0101k1a+kk2c+k

=akc(ak)(ck)(a+kck)

=akc(ak)(kc)(ca)

y=D2D=akc(ak)(kc)(ca)abc(ab)(bc)(ca)

=k(ak)(kc)(ca)b(ab)(bc)(ca)

D3=abka2b2k2a3b3k3=abk111abka2b2k2=abk010abbkba2b2b2k2b2

abk(ab)(kb)0101b1a+bb2k+b

=abk(ab)(kb)(a+bkb)

=abk(ab)(bk)(ka)

z=D3D=abk(ab)(bk)(ka)abc(ab)(bc)(ca)

=k(ab)(bk)(ka)c(ab)(bc)(ca)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon