6.
3(xcosθ−ysinθ)2−6(xcosθ−ysinθ)
(xsinθ+ycosθ)+3(xsinθ+ycosθ)2+7(xcosθ−ysinθ)−3=0
Coefficient of xy=0
⟹−6sinθcosθ−6(cos2θ−sin2θ)+6sinθcosθ=0
thereforecos2θ=0 ∴=π2,3π2 ∴θ=π4,3π4
Since θ is obtuse we choose θ=3π4
∴ Coefficient of x2
=3(cos2θ+sin2θ)−6sinθcosθ
=3.1−3.sin2theta=3+3=6 ∵sin2θ=sin3π2=−1