The
given equations are
⇒2x−1+y−24=2......eq(1)
⇒32(x−1)2(y−2)4=4720......eq(2)
Put1x−1=u and y−2=v in eq(1) and eq(2)
⇒2u+v4=2⇒8u+v=8....eq(3)
⇒3u2+2v5=4720⇒30u+8v=47.....eq(4)
Multiply eq(3) by 8
⇒64u+8v=64.....eq(5)
Subtract eq(4) and eq(5)
⇒(64u+8v=64)−(30u+8v+47)
⇒34u=17⇒u=12
put u=12 in eq(3)
⇒8×12+v=8⇒v=4
Hence,u=1x−1=12⇒x−1=2⇒x=3
v=y−2=4⇒y=6