Based on this information answer the questions given If (a>1,x>1) or (0<a<1,0<x<1). then logax>0 i.e., logax is positive. If (0<a<1,x>1) or (a>1,0<x<1), then logax<0 If a>b then logba>1 and logab<1.
Determine the sign of loga(3.162)loga(2/3).
Open in App
Solution
Given:
A=loga(3.162)loga(2/3)
Let's consider 2 cases:
Case-1: if a>1, then
loga3.162>0; hence positive.
and loga(2/3)=loga0.67<0; hence negative
So,
A=loga(3.162)loga(2/3) is a negative quantity.
Case-2: if 0<a<1, then
loga3.162<0; hence negative.
and loga(2/3)=loga0.67>0; hence positive
So,
A=loga(3.162)loga(2/3) is again a negative quantity.