The correct option is D x+y2
In △EBD, we have
EB=ED ....(Tangents from same point are equal)
Hence, ∠BED=∠BDE ....(isosceles triangle property)
Now, Sum of angles =180o
⇒∠BED+∠BDE+x=180
⇒2∠BDE=180−x
⇒∠BDE=90−x2
Similarly, ∠FDC=90−y2
Now, ∠EDB+∠EDF+∠FDC=180
⇒90−x2+∠EDF+90−y2=180
⇒∠EDF=x+y2