wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

BC is a chord with centre O. A is a point on an arc BC as shown in the figure. Prove that:

(i) BAC+OBC=90, if A is the point on the major arc

(ii) BACOBC=90, if A is the point on the minor arc.


Open in App
Solution


(i) We observe that the minor arc BC makes BOC=2BAC at the centre

Let BAC=x

z=2x ...... (1)

In OBC, we have

OBC+OCB+BOC=180

y+z+y=180

2x+2y=180 [From (1)]

x+y=90

BAC+OBC=90


(ii) We observe that the major arc BC subtends BOC=z and O=t, at the centre and BAC=x, at a point on the circumference.

z=2x

In ΔOBC, we have

OBC+OCB+BOC=180

y+y+t=180

t=1802y

Now, z=360t

z=360180+2y

2x=180+2y [z=2x]

xy=90

BACOBC=90


flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon