∫π/20sinmx dx=∫cosn−1x.sinmxcosx dx
Put sinx=t
cosx dx=dt
∴ I=∫(√1−t2n−1)tmdt
Applying Integration By Path
=∫(√1−t2n−1)tm+1m+1−∫10−(√1−t2n−3)tm+2n−1m+1dt
Resultituting t=sinx
∴ I=0+∫π/20cosxn−2sinxm+2 dx(n−1m+1)
∴ I=n−1m+1∫π/20sinxm(1−cos2x)cosn−2x dx
∴ I=n−1m+1[∫sinmx cosn−2x dx−∫sinnx cosnx dx]
∴ n−1m+1∫sinmx cosn−2x dx−(n−1m+1)I
∴ I(m+nm+1)=n−1m+1∫sinmx cosn−2x dx
∴ I=n−1m+n∫sinmx cosn−3x cosx dx↓
Solving in a similar manner yirld the required answer.
∴ I=n−1m+n.n−3m+n−2