Column IColumn 2Column 3(I)f(x)=tan(2tan−1√√1+√x−1√1+√x+1)(i)∫f(x)dx=43x34+C(P)∫10f(x)dx=43(II)f(x)=cot(2tan−1√√1+√x−4√x√1+√x+4√x)(ii)∫f(x)dx=45x54+C(Q)∫10f(x)dx=45(III)f(x)⎛⎜⎝1−tan(12sin−1(1−√x1+√x))1+tan(12sin−1(1−√x1+√x))⎞⎟⎠(iii)∫f(x)dx=23x34+C(R)∫10f(x)dx=23(IV)f(x)=√xtan(2tan−1(√√1+√x+1−√√1+√x−1√√1+√x+1+√√1+√x−1))(iv)∫f(x)dx=25x54+C(S)∫10f(x)dx=25
Which of the following options is only correct combination?
(I), (ii), (Q)
Let √x=tan2θ
x=tan4θ⇒tanθ=x14⇒dx=4tan3θsec2θdθ∴√1+√x=secθ
(A)∫tan(2tan−1√√1+√x−1√1+√x+1)dx=∫tanθ.4tan3θsec2θdθ=45tan5θ+C=45(x54)+C
(B)∫cot(2tan−1√√1+√x−4√x√1+√x+4√x)dx=∫cot(2tan−1)√(secθ−tanθ)24tan3θsec2θdθ=∫cot(2tan−1(1−sinθcosθ))4tan3θsec2θdθ∫tanθ4tan3θsec2θdθ=45tan5θ+C=45x54+C
(C)∫1−tan(12sin−1(1−√x1+√x))1+tanx(12sin−1(1−√x1+√x))dx=∫1−tan(π4−θ)1+tan(π4−θ)4tan3θsec2θdθ=∫tanθ4tan3θsec2θdθ=45tan5θ+C=45x54+C
(D)∫√xtan(2tan−1(√√1+√x+1−√√1+√x−1√1+√x+1+√√1+√x−1))dx=inttan2θtan(2tan−1(cosθ2−sinθ2cosθ2+sinθ2))4tan3θsec2θdθ=∫tan2θtan(π2−θ)4tan3θsec2θdθ=45tan5θ+C=45x54+C