wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Column IColumn 2Column 3(I)cos(sin1(sin5π6))=(i)1(P)f(x)=3x313x2+14x2 hasthree roots α,β,γ, then value of|sin(tan1α+tan1β+tan1γ)|=(II)cos(cos1(sin7π6))=(ii)12(Q)(3cosec20sec20)8=(III)cos{tan1(tan15π4)}=(iii)12(R)42(sin12)(sin48)(sin54)=(IV)sin((cos1{12(cos9π10sin9π10)}+7π20)1×π2)(iv)32(S)If the angles A, B and C of atriangle are in an arithmetic progressionand if a,b and c denote the lengths ofsides opposite to A,B and C respectively,then the value of the expression12(acsin2C+casin2A)is

Which of the following options is only INCORRECT combination?


A

(III), (ii), (P)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

(IV), (iii), (Q)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

(III), (ii), (R)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

(IV), (iii), (P)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

(IV), (iii), (P)


cos(sin1(sin5π6))=cos(π6)=32cos(cos1(sin7π6))=cos(π3)=12cos(tan1(tan15π4))=cos(3π4)=12cos1{12(cos9π10sin9π10sin9π10)}=cos1(cos23π20)=2π23π20=17π20
f(x)=3x313x2+14x2α,β,γα+β+γ=133αβ+βγ+γα=143αβγ=23sin(tan1α+tan1β+tan1γ)sin(tan1(133231143))=sin(tan1(1))=12
3cosec20sec20=tan60cosec20sec20=sin60cos20cos60sin20cos60.sin20cos20=sin4012sin20cos20=4(sin12)(sin48)(sin54)=12(2sin12sin48)sin54=12(2sin12sin48)sin54=12[cos36cos60]sin54=12[cos3612]sin54=12[(5+14)212(5+14)]=18
(iv)Since A,B,C are in A.P. B=60
ac(2sinCcosC)+ca(2sinAcosA)=2k(acosC+ccosA)=2kb=2sinB=3


flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon