List−IList−II P(t)=(1t2+1,tt2+1).If P(α),B(β).C(γ) P.are vertices of an equilateral triangle1.0 (α,β,γ>0)and its centroid is(a,b)then 2a+b= IF a complex number!z satisfying |z−2+i|≤1, Q.then the maximum distance of origin from 4+i(2−z)is2.12 Consider the curve xy=25! such that (α,β)is a point on the curve. R.Then the number of distinct ordered pairs(α,β)3.22 such that HCF(α,β)=1 is 2k then k= S.If 2(1+cosπx)log52+2x2−1+22(1−|x|)=3,then sum of the roots is4.32
P-2,Q-3,R-4,S-1
P:Point lies on x2+y2=x
∴ centre is (12,0)
a=12, b=0
Q:|4+2i−iz|=|z−2+i+3i| ≤1+3=4
R:xy=25! =222⋅31056 73 112 131 171 191 231
∴29
S:1+cosπx=0, x2–1=0 |x|=1⇒x=±1.
sum=0