The correct option is C 1→q, 2→p, 3→r
(1)
cos21∘−cos22∘2sin3∘sin1∘
⇒sin3∘sin1∘2sin3∘sin1∘=12
(2)
=sin(−870∘)+cosec (−660∘)+tan(−855∘) +2cot(840∘)+cos(480∘)+sec(900∘)
=−sin(870∘)−cosec (660∘)−tan(855∘) +2cot(810∘+30∘)+cos(450∘+30∘)+sec(900∘+0∘)
=−sin(810∘+60∘)−cosec (720∘−60∘)−tan(810∘+45∘) −2tan(30∘)−sin(30∘)−sec(0∘)
=−12+2√3+1−2√3−12−1
=−1
(3)
cosθ=45, θ∈(3π2,2π)⇒sinθ=−35
cosα=35, α∈(0,π2)⇒sinα=45
Now,
cos(θ−α)=cosθcosα+sinθsinα=45×35−35×45=0