The correct option is D (a)→(p),(q);(b)→(r),(s);(c)→(p);(d)→(p),(q)
(a).
Let I=∫2x√1−4xdx
Putting 2x=t⇒2x log2 dx=dt,
⇒I=1log 2∫1√1−t2dt
⇒I=1log2sin−1(t1)+c =1log2sin−1(2x)+c
∴k=1log2
(a)→(p),(q)
(b).∫(√x)5(√x)7+x6 dx=∫dx(√x)2+(√x)7=∫dx(√x)7(1+1(√x)5)
Putting 1(√x)5=y,dydx=−52(√x)7
∴I=∫−2dy5(1+y) =−25ln|1+y|+c =25ln⎛⎜
⎜
⎜
⎜⎝11+1(√x)5⎞⎟
⎟
⎟
⎟⎠ =25ln((√x)51+(√x)5)
⇒a=25,k=52⇒ak=25×52=1
(b)→(r),(s)
(c).
I=∫x4+1x(x2+1)2 dx⇒I=∫x4+2x+1−2x2x(x2+1)2 dx⇒I=∫(x2+1)2−2x2x(x2+1)2 dx⇒I=∫1x−2x(x2+1)2 dx⇒I=ln|x|+11+x2+c
k=1, m=1⇒km=1
(c)→(p)
(d).I=∫dx5+4cosx
=∫dx5(sin2x2+cos2x2)+4(cos2x2−sin2x2)
=∫dx9cos2x2+sin2x2 =∫sec2x29+tan2x2dx
Let t=tanx2
⇒dt=12sec2x2dx
∴I=∫2dt9+t2 =23tan−1(t3)+c
=23tan−1⎛⎜
⎜
⎜
⎜⎝tan(x2)3⎞⎟
⎟
⎟
⎟⎠+c
∴k=23, m=13⇒k/m=2
(d)→(p),(q)