wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Column IColumn IIa. The value oflog2log2log4256+log24 is p. 1b. If log3(5x2)2log33x+1=1log34,then x= q. 6c. Product of roots of the equation 7log7(x24x+5)=(x1) is r. 3d. Number of integers satisfyinglog2x2(log14x)2+1>0 ares. 5
Then which of the following is correct ?

A
as, br, cp, dq
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
as, bp, cq, dr
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
as, bp, cq, dr
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ap, br, cp, dq
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C as, bp, cq, dr
a.

log2log2log4256+log24=log2log2log444+2log24=log2log24+2×2=log22+4=5

b.

log3(5x2)2log33x+1log3(5x2)=1log34Now, 5x2>0x>253x+1>0x>13log3(5x2)2log33x+1=1log34log3[5x23x+1]+log34=1log3[4(5x2)3x+1]=14(5x23x+1)=320x8=9x+311x=11x=1

c.

7log7(x24x+5)=x1 (1)Now, x24x+5>0x24x+4+1>0(x2)2+1>0xRAlso, x1>0x>1From (1), x24x+5=x1x25x+6=0(x2)(x3)=0x=2 or x=3

d.

Given expression is defined if x>0log2x2(log1/4x)2+1>0log2x122(log22x)2+1>012log2x2×14(log2x)2+1>012log2x12(log2x)2+1>0Let log2x=ty2y22+1>0y2y2<0(y2)(y+1)<01<y<21<log2x<212<x<2x(12,4)
Integer values of x are 1,2,3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Laws of Logarithms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon