The correct option is C a→s, b→p, c→q, d→r
a.
log2log2log4256+log√24=log2log2log444+2log24=log2log24+2×2=log22+4=5
b.
log3(5x−2)−2log3√3x+1⇒log3(5x−2)=1−log34Now, 5x−2>0⇒x>253x+1>0⇒x>−13⇒log3(5x−2)−2log3√3x+1=1−log34⇒log3[5x−23x+1]+log34=1⇒log3[4(5x−2)3x+1]=1⇒4(5x−23x+1)=3⇒20x−8=9x+3⇒11x=11⇒x=1
c.
7log7(x2−4x+5)=x−1 ⋯(1)Now, x2−4x+5>0⇒x2−4x+4+1>0⇒(x−2)2+1>0∴x∈RAlso, x−1>0⇒x>1From (1), x2−4x+5=x−1⇒x2−5x+6=0⇒(x−2)(x−3)=0⇒x=2 or x=3
d.
Given expression is defined if x>0log2√x−2(log1/4x)2+1>0⇒log2x1⇒2−2(log2−2x)2+1>0⇒12log2x−2×14(log2x)2+1>0⇒12log2x−12(log2x)2+1>0Let log2x=t⇒y2−y22+1>0⇒y2−y−2<0⇒(y−2)(y+1)<0⇒−1<y<2⇒−1<log2x<2⇒12<x<2∴x∈(12,4)
Integer values of x are 1,2,3