1 - Q, 2 - P, 3 - S, 4 - R
7 cos2 x + 3 sin2 x = 4
We know, identity sin2 x + cos2 x = 1
(4 + 3) cos2 x + 3 sin2 x = 4
4 cos2 x + 3 cos2 + 3 sin2 x = 4
4 cos2x + 3(sin2 x + cos2 x) = 4
4 cos2 x + 3 = 4
4 cos2 x = 1
cos2 x = 1/4
cos2 x = (12)2 = cos2 π3
General solutions is x = nπ±π3 , Where n ∈ Z
2 . sin2 x = 12
sin2 x = (1√3)2 = sin2 π4
General solution = nπ ± π4
3. tan2 x + 3 = 0
tan2 x =-3
square of trigonometric function cannot be negative .
no solution
4. 3tan2 x - 1=0
tan2 x = 13
tan2 x = (1√3)2
tan2 x = tan2 (π6)
So, general solution is x = nπ± π6