The correct option is C a→q,b→s,c→p,d→r
a. 5sinθ+3sin(θ−α)
=5sinθ+3(sinθcosα−cosθsinα)
=(5+3cosα)sinθ−3sinαcosθ
∴maxθ ∈ R{5sinθ+3sin(θ−α)}
=√(5+3cosα)2+9sin2α
=√34+30cosα
Therefore, 34+30cosα=72=49
⇒cosα=12
⇒α=2nπ±π3,n∈Z
b. (cosx)sin2x−3sinx+2=1
⇒sin2x−3sinx+2=0
⇒(sinx−1)(sinx−2)=0
⇒sinx=1
But this does not satisfy the equation as 00=1 is absurd.
c. √sinx+21/4cosx=0
∵√sinx>0,
∴cosx<0
Also, sinx>0⇒x lies in the 2nd quadrant.
√sinx+21/4cosx=0
⇒21/4cosx=−√sinx
⇒√2cos2x=sinx
⇒√2sin2x+sinx−√2=0
⇒(√2sinx−1)(sinx+√2)=0
⇒sinx=1√2
⇒x=2nπ+3π4,n∈Z
d. log5tanx=(log54)(log4(3sinx))
⇒log5tanx=log5(3sinx)
For log to be defined,
tanx>0,sinx>0
⇒x lies in the 1st quadrant.
log5tanx=log5(3sinx)
⇒tanx=3sinx
⇒cosx=13
⇒x=2nπ+cos−113,n∈Z