The correct option is C a→q,b→r,c→p
a. sin(410∘−A)cos(400∘+A)+cos(410∘−A)sin(400∘+A)
=sin(410∘−A+400∘+A)
=sin(810∘)
=sin(4π+π2)
=sinπ2
=1
b. cos21∘−cos22∘2sin3∘sin1∘
=(1−sin21∘)−(1−sin22∘)2sin3∘sin1∘
=sin22∘−sin21∘2sin3∘sin1∘
=sin3∘⋅sin1∘2sin3∘sin1∘
=12
c. sin(−870∘)+cosec(−660∘)+tan(−855∘)+2cot(840∘)+cos(480∘)+sec(900∘)
=−sin(810∘+60∘)−cosec(630∘+30∘)−tan(810∘+45∘) +2cot(810∘+30∘)+cos(450∘+30∘)+sec(810∘+90∘)
=−cos60∘+sec30∘+cot45∘ −2tan30∘−sin30∘−cosec 90∘
=−12+2√3+1−2√3−12−1
=−1