The correct option is B (I)→(Q), (II)→(T)
(I)
(f∘g)(x)=e⎡⎢⎣x2−4x+3x2−2x+3⎤⎥⎦
Let y=x2−4x+3x2−2x+3
⇒(y−1)x2+(4−2y)x+3y−3=0
It is a quadratic equation and its discriminant should be ≥0
(4−2y)2−4(y−1)(3y−3)≥0
⇒y∈[1−√32,1+√32]
Now, for y∈[1−√32,1+√32]
Range of (f∘g)(x) ={e−1,e0,e1}
Only integer in the range of (f∘g)(x) is e0=1
(I)→(Q)
(II)
4∫0z18−117∑n=0zndz=4∫0(z−1) dz
⇒4∫0z18−117∑n=0zndz=422−4=4
(II)→(T)
(III)
y2sin(2Z)+z2sin(2Y)=2yz
⇒y2(2sinZcosZ)+z2(2sinYcosY)=2yz
Multiplying both sides by R where R is the circumradius.
y2(zcosZ)+z2(ycosY)=2Ryz
⇒ycosZ+zcosY=2R
⇒x=2R
⇒∠X=90∘
x2=y2+z2=225+64=289
⇒x=17
Now, inradius r=Δs=15×815+8+17=12040=3
(III)→(S)
(IV)
sin−1x−cos−1x≥0
⇒2sin−1x≥π2
⇒x∈[1√2,1]
tan−1x−cot−1x≥0
⇒2tan−1x≥π2
⇒x∈[1,∞]
Therefore, domain of f(x) is [1√2,1]∩[1,∞]={1}
At x=1,
√sin−11−cos−11=√π2
and √tan−11−cot−11=0
∴f(1)=√π2
(IV)→(P)