The correct option is D (IV)→(P)
(I)
The number of onto functions from A to B is :
=3∑k=0(−1)k nCk(3−k)4
=34− 3C1×(3−1)4+ 3C2×(3−2)4
=81−48+3=36
(II)
f(x)=sin(x2)+cos(x2)
x2∈[0,13]
Maximum value of f(x)=√2 and its attans at
sin(x2)=cos(x2)
⇒tan(x2)=1
⇒x2=π4,9π4<13⇒x=±√π2,±3√π2
Hence, there are 4 points in x∈[−√13,√13]
(III)
y2sin(2Z)+z2sin(2Y)=2yz
⇒y2(2sinZcosZ)+z2(2sinYcosY)=2yz
Multiplying both sides by R where R is the circumradius.
y2(zcosZ)+z2(ycosY)=2Ryz
⇒ycosZ+zcosY=2R
⇒x=2R
⇒∠X=90∘
x2=y2+z2 =225+64 =289
⇒x=17
Now, inradius is, r=Δs=15×815+8+17=12040=3
(IV)
logx+1(4x3+9x2+6x+1)+log4x+1(x2+2x+1)=5
x+1>0,x≠0 and4x+1>0,x≠0 ⋯(1)
Now,
logx+1[(x+1)2(4x+1)]+log4x+1(x+1)2=5
⇒2logx+1(x+1)+logx+1(4x+1)+2log4x+1(x+1)=5
⇒logx+1(4x+1)+2logx+1(4x+1)=3
Put logx+1(4x+1)=t
⇒t+2t=3
⇒t=1,2
When
t=1⇒logx+1(4x+1)=1
⇒4x+1=x+1⇒x=0
Which is not possible [from eqn(1)]
When
t=2⇒logx+1(4x+1)=2
⇒4x+1=(x+1)2⇒x=0,2 but x≠0
∴x=2 is the only solution.