The correct option is A (I)→(S)
(I)
log|cosx|(1+sinx)=2
So,
1+sinx≠0 ⋯(1)
|cosx|≠1 ⋯(2)
We can write,
1+sinx=|cosx|2
⇒1−cos2x+sinx=0
⇒sinx(sinx+1)=0
⇒sinx=0
sinx=0⇒cosx=±1⇒|cosx|=1
Which is not possible,
Hence the equation will not have any solution
(I)→(R)
(II)
x≥4⇒∣∣|x−4|−|x−3|∣∣ =|x−4−x+3|=1x≤3⇒∣∣|x−4|−|x−3|∣∣ =|−x+4+x−3|=1
3<x<4
∣∣|x−4|−|x−3|∣∣ =|−x+4−x+3|=|−2x+7|
So the maximum will be
a=|4−3|=1
x≥4|x−4|+|x−3|=x−4+x−3 =2x−7x≤3|x−4|+|x−3|=−x+4−x+3 =−2x+7
3<x<4|x−4|+|x−3|==−x+4+x−3=1
So the minimum will be,
b=1
Hence ⇒a+b=2
(II)→(T)
(III)
f(x3−6x2+11x−3)=x−1
x3−6x2+11x−3=3⇒(x−1)(x2−5x+6)=0⇒(x−1)(x−2)(x−3)=0
⇒x=1,2,3
So,
x=1⇒f(3)=1−1=0
x=2⇒f(3)=2−1=1
x=3⇒f(3)=3−1=2
(III)→(R),(S),(T)
(IV)
Putting θ=0 and ϕ=0
x+z=2y+z=1x=z
x=z=1,y=0
∴x2+y2+z2=1+1=2
(IV)→(T)