wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Column IColumn II(a)The minimum value of 93 27cos 2x 81sin 2x is(p)1(b)Number of solutions of the equation cos7x+sin4x=1,x ϵ [0,2π](q)2(c)Value of a for which the equation a22a+sec2 π(a+x)=0 has a solution(r)3(d)If cos (Psin x) = sin (P cos x), then the minimum possible value of 42π P is(s)4

Which of the following is correct?


A

A-P,B-R,C-S,D-Q

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

A-S,B-R,C-P,D-Q

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

A-R,B-R,C-P,D-Q

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

A-R,B-S,C-P,D-Q

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

A-R,B-S,C-P,D-Q


(a)36 33cos2x 34sin2x=36+3cos2x+4sin2x

3cos2x+4sin2x=5sin(α+2x)

minimum value of 5sin(α+2x)=5(1)=5

minimun value of 9327cos 2x81sin 2x=365=3.

(b)cos7x+sin4x=1

cos7x=1sin4x

cos7x=cos2x(1+sin2x)

cos2x(cos5x(1+sin2x))=0

cos2x=0 or cos5x=1+sin2x

cosx=0 or cosx=1

x=π2,3π2 or x=0,2π

four solutions

(c)a22a+1+tan2π(a+x)=0

(a1)2+(tan π(a+x))2=0

only possible when a = 1 and

tanπ(a+x)=0

a=1 and tan(π+πx)=0

(d)cos(Psinx)=sin(Pcosx)

cos(Psinx)=cos(π2Pcosx)Psinx=π2Pcosx

P(sinx+cosx)=π2

max(sinx+cosx)=2

minimum possible value of P=π22

minimum positive value of 42πP=2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon