Column IColumn II(a)The minimum value of 93 27cos 2x 81sin 2x is(p)1(b)Number of solutions of the equation cos7x+sin4x=1,x ϵ [0,2π](q)2(c)Value of a for which the equation a2−2a+sec2 π(a+x)=0 has a solution(r)3(d)If cos (Psin x) = sin (P cos x), then the minimum possible value of 4√2π P is(s)4
Which of the following is correct?
A-R,B-S,C-P,D-Q
(a)36 33cos2x 34sin2x=36+3cos2x+4sin2x
3cos2x+4sin2x=5sin(α+2x)
minimum value of 5sin(α+2x)=5(−1)=−5
∴minimun value of 9327cos 2x81sin 2x=36−5=3.
(b)cos7x+sin4x=1
cos7x=1−sin4x
⇒cos7x=cos2x(1+sin2x)
⇒cos2x(cos5x−(1+sin2x))=0
∴cos2x=0 or cos5x=1+sin2x
∴cosx=0 or cosx=1
∴x=π2,3π2 or x=0,2π
∴ four solutions
(c)a2−2a+1+tan2π(a+x)=0
(a−1)2+(tan π(a+x))2=0
only possible when a = 1 and
tanπ(a+x)=0
∴a=1 and tan(π+πx)=0
(d)cos(Psinx)=sin(Pcosx)
⇒cos(Psinx)=cos(π2−Pcosx)⇒Psinx=π2−Pcosx
⇒P(sinx+cosx)=π2
max(sinx+cosx)=√2
∴minimum possible value of P=π2√2
∴minimum positive value of 4√2πP=2