Column IColumn II(a)arg(z+1z−1)=π4(p)Parabola(b)z=3i−12+it(t ϵ R)(q)Part of a circle(c)arg z=π4(r)Full circle(d)z=t+it2(t ϵ R)(s)Line
Which of the following is correct?
A-Q,B-R,C-S,D-P
arg(z+1z−1)=π4
Letz=x+iy
⇒arg(x+iy+1x+iy−1)=π4
⇒arg((x+1)+iy(x−1)+iy)=π4
⇒arg((x2+y2−1)+i(−2y)(x−1)2+y2)=π4
⇒(−2yx2+y2−1)=π4;−2y>0 & x2+y2−1>0
⇒−2yx2+y2−1=1
⇒x2(y+1)2=2;which is a fall circle
but∵−2y>0⇒y<0;
hence this is only part of a circle.
(b)z=3i−1z+it(tϵR)
Let z = x + iy
x+iy=−1+3iz+it
=(3t−2)t2+4+it+6t2+4
⇒x=3r−2t2+4
;y=t+6t2+4
⇒x2=9t2+4−12t(t2+4)2;y2=36+t2+12t(t2+4)2
∴x2+y2=102+40(t2+42)=10t2+4......(1)
x−3y=−2−18t2+4=−20t2+4=−20t+4......(2)
x−3y−20=x2+y210
x2+y2+x2−3y2=0⟶Full circle
(c)arg z=π4
z is a line passing through origin at π4 angle with X - axis
(d)z=t+it2(tϵR)
x+iy=t+it2
x=t;t+it2
⇒y=x2⟶Parabola