Column 1Column 21.sin18∘ p. −√5−142.cos18∘q.−1+√543.cos9∘ - sin9∘r.√10+2√54s.10+2√54t.√5−√52u.√5−2√52
1-q 2-r 3-t
1.sin18∘
We can't write sin18 as compound angle (A ± B) from where A & B are standard angles (0,30,45,60,90)
We observe that,
18 ×=90∘
Let θ=18∘
5θ=90∘
2θ+3θ=90∘
2θ=90∘−+3θ
sin2θ=sin(90−3θ)
2sinθ.cosθ=cos3θ=4cos3θ−3cosθ
2sinθ.cosθ=cosθ(4cos2θ−3)
(2sinθ−4cos2θ+3)cosθ=0
{Ifcosθ=0θ=90∘But we have taken θ=18∘cosθcannot be equal tozero}
So,cosθ≠0
2sinθ−4cos2θ+3=0
2sinθ−4(1−sin2θ)−3=0
2sinθ−4+4sin2θ+3=0
4sin2θ+2sinθ−1=0
sinθ=−2±√(2)2−(4×4×(−1))2×4
= −2±√4+168
= −2±√208 = −2±2√58 = −1±√54
θ=18∘sinθcannot be negative
sin18∘=−1+√54
2. In △ABC
AB2=16−(−1+√5)2
= 16−(1+5−2√5)
= 16−6+2√5
= 10+2√5
AB = √10+2√5
cos18∘=ABAC=√10+2√54
3. cos9∘−sin9∘
Letx = cos9∘−sin9∘
On squaring both sides, we will get the terms of cos9∘−sin9∘and2cos9∘sin9∘. These terms can be written as 1 & sin18∘ respectively.
x2=cos29∘+sin29∘−2cos9∘sin9∘
= 1−sin18∘ {sin18∘=√5−14}
= 1−√5−14
= 4−√5+14=5+√54
x2=5−√54
cos9∘−sin9∘=√5−√52