Column IColumn II a.√x+2>√8−x2p.(−∞,−32)∪(−14,14)∪(32,∞)b.||x|−1|<1−xq.(−∞,0)∪[1,2]c.∣∣∣2−3|x|1+|x|∣∣∣>1r.(2,2√2]d.√2−x+4x−3x≥2s.(−∞,0)
Which of the following is the correct option ?
A
(a)→(r)(b)→(s)(c)→(p)(d)→(q)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(a)→(q)(b)→(s)(c)→(p)(d)→(r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a)→(r)(b)→(p)(c)→(s)(d)→(q)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a)→(q)(b)→(s)(c)→(r)(d)→(p)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(a)→(r)(b)→(s)(c)→(p)(d)→(q) a. √x+2>√8−x2 Square root will be defined when x+2≥0⇒x≥−28−x2≥0⇒8≥x2⇒−2√2≤x≤2√2∴x∈[−2,2√2]⋯(1) Now, squaring the given inequality, we get x+2>8−x2⇒x2+x−6>0⇒(x+3)(x−2)>0⇒x∈(−∞,−3)∪(2,∞)⋯(2) From (1) and (2), we get x∈(2,2√2]
(a)→(r)
b. ||x|−1|<1−x When x≥0 |x−1|<−(x−1) Not possible When x<0 |−x−1|<1−x⇒|x+1|<1−x
Case 1:0>x≥−1, we get x+1<1−x⇒2x<0⇒x<0 Case 2:−1>x, we get −x−1<1−x⇒−1<1 Always true. Therefore x∈(−∞,0) (b)→(s)
c. ∣∣∣2−3|x|1+|x|∣∣∣>1 Two possible cases, 2−3|x|1+|x|>1⇒2−3|x|>1+|x|(∵1+|x|>0)⇒−4|x|>−1⇒|x|<14⇒x∈(−14,14)⋯(1) 2−3|x|1+|x|<−1⇒2−3|x|<−1−|x|⇒−2|x|<−3⇒|x|>32⇒x∈(−∞,−32)∪(32,∞)⋯(2) From (1) and (2), we get x∈(−∞,−32)∪(−14,14)∪(32,∞)
(c)→(p)
d. √2−x+4x−3x≥2 Here x≠0 Square root is defined when 2−x≥0⇒2≥x⇒x∈(−∞,2]−{0}
When x∈(0,2] √2−x+4x−3x≥2⇒√2−x+4x−3≥2x⇒√2−x≥3−2x
⇒x∈[1,2]⋯(1)
When x∈(−∞,0) √2−x+4x−3x≥2⇒√2−x+4x−3≤2x⇒√2−x≤3−2x Squaring on both sides, we get ⇒2−x≤9+4x2−12x⇒4x2−11x+7≥0⇒x≥74 or x≤1⇒x∈(−∞,0) Therefore x∈(−∞,0)∪[1,2] (d)→(q)