The correct option is C (A)→(R),(B)→(T),(C)→(Q),(D)→(S)
(A)
Let the roots be a−d,a,a+d
⇒a−d+a+a+d=9
⇒a=3
So 3 is the root of the equation x3−9x2+26x−k=0
⇒33−9(3)2+26(3)−k=0
⇒k=24
(A)→(R)
(B)
Let the roots be ar,a,ar
⇒(ar)(a)(ar)=64
⇒a=4
So 4 is the root of the equation x3−14x2+k−64=0
⇒43−14(4)2+k(4)−64=0
⇒k=56
(B)→(T)
(C)
f(x)=6x3−kx2+6x−1=0, here roots are in H.P.
f(1x)=x3−6x2+kx−6=0, here the roots will be in A.P.
Let the roots be a−d,a,a+d
⇒a−d+a+a+d=6
⇒a=2
So 2 is the root of the equation x3−6x2+kx−6=0
⇒k=11
(C)→(Q)
(D)
x3−11x2+3x−26=0
Let the roots be α,β,γ
H.M.=31α+1β+1γ=3αβγαβ+βγ+γα=26
(D)→(S)