The correct option is D (D)→(R)
(A)
limn→∞(n2+1n+1−an)−b=0⇒limn→∞((1−a)n2+1−ann+1)−b=0
For the limit to exist,
1−a=0⇒a=1
⇒limn→∞(1−nn+1)−b=0⇒−1−b=0⇒b=−1
(A)→(S)
(B)
x2y+y3=2
Differentiating w.r.t. x,
2xy+x2y′+3y2y′=0
If x=1, then y3+y−2=0⇒y=1
Putting x=1,y=1, we get
2+y′+3y′=0⇒y′=−12 ⋯(1)
Again differentiating w.r.t. x,
2y+2xy′+2xy′+x2y′′+6y(y′)2+3y2y′′=0
Putting x=1,y=1 and using equation (1), we get
2−1−1+y′′+32+3y′′=0⇒y′′=−38∴m=3
(B)→(U)
(C)
f(x)={x,x≤1x2+bx+c,x>1
f′(x)={1,x≤12x+b,x>1
The function is differentiable, so it is continuous at x=1
1=1+b+c⇒b+c=0 ⋯(2)
Also, f′(1+)=f′(1−)
⇒2+b=1⇒b=−1∴c=1 [From (2)]
(C)→(Q)
(D)
f(x)=x∫0tsin1t dt
In the interval (0,π),xsin1x is continuous.
∴f′(x)=xsin1x
So, f′(x) is finite and exists for all x∈(0,π), therefore f(x) is continuous at all points.
So, the number of points of discontinuity of f(x) in (0,π) is 0.
(D)→(P)