The correct option is B (C)→(P), (Q), (S)
(A)
D=√1+4a
1+4a=(2λ+1)2
a=λ(λ+1),λ∈I+
(B)
Let f(x)=ax2+2bx+4c−16
f(−2)=4a−4b+4c−16=4(a−b+c−4)>0
As the given equation has no real roots,
∴f(x)>0 ∀ x∈R
⇒f(0)>0
⇒4c−16>0⇒c>4
(C)
Both roots are negative if, D≥0, the product of the roots must be positive and the sum of the roots must be negative.
⎧⎪⎨⎪⎩−2b<0⇒b>04b2−4(9b−14)≥09b−14>0
We get b∈(149,2]∪[7,∞)
(D)
|x−|x−4||=2x+4
(i) x>4
4=2x+4⇒x=0, which is not possible
(ii) x≤4
|x+x−4|=2x+42|x−2|=2x+4
(a) 2≤x≤4
2x−4=2x+4, which is not possible
(b) x≤2
−2x+4=2x+4⇒x=0
So, the equation has only one solution.