The correct option is B (B)→(T)
(A)
f(x)={x ; x≤1x2+bx+c ; x>1
So the function is continuous at x=1,
1=1+b+c⇒b+c=0
Now,
f′(x)={1 ; x≤12x+b ; x>1
So the function is differentiable at x=1,
1=2+b⇒b=−1
∴bc=−1×1=−1
(A)→(P)
(B)
y2−2x3−4y+8=0⋯(1)⇒2yy′−6x2−4y′=0⇒y′=3x2y−2
Tangent at (x1,y1),
y−y1x−x1=3x21y1−2⋯(2)
Equation (1),
y2−2x3−4y+8=0⇒(y−2)2=2x3−4⇒(y1−2)2=2x31−4
Equation (2),
y−y1x−x1=3x21y1−2
Putting (1,2),
⇒−(y1−2)2=3x21(1−x1)⇒−2x31+4=3x21(1−x1)⇒(x1−2)2(x1+1)=0⇒x1=−1,2
When x=2
(y1−2)2=3×4(1)⇒y1=2±2√3
When x=−1
(y1−2)2=−6⇒y→non real
Therefore, two possible tangents.
(B)→(R)
(C)
f(x)=2x3−3ax2+43a2x+1⇒f′(x)=6x2−6ax+43a2=0⇒(3x−a)(3x−2a)=0⇒x=a3,2a3
Now,
f′′(x)=12x−6af′′(a3)<0 f′′(2a3)>0∴p=a3,p2=2a3⇒a29=2a3⇒a=6
(C)→(U)
(D)
f(x)=1∫−1sinx1+t2 dt⇒f(x)=sinx1∫−111+t2 dt⇒f(x)=sinx[tan−1t]1−1⇒f(x)=π2sinx⇒f′(x)=π2cosx⇒f′(π3)=π4=πk
Therefore, k=4
(D)→(T)