The correct option is C (D)→(R),(S)
(A) If the quadratic equation x2−2αx+2α=0 has two real and distinct roots, then
D>0⇒4α2−8α>0⇒4α(α−2)>0⇒α∈(−∞,0)∪(2,∞) …(i)
Also, given that
|x1−x2|≤2√3⇒(x1+x2)2−4x1x2≤12⇒4α2−8α≤12⇒(α−3)(α+1)≤0⇒α∈[−1,3] …(ii)
From (i) and (ii),
α∈[−1,0)∪(2,3]
∴α can be −1,3
(A)→(S),(T)
(B) y=x2+4xx2+4x+6⇒y=1−6(x+2)2+2⇒y∈[−2,1)
∴y=−2,−1,0
(B)→(P),(T)
(C) (2−n)x2−n<8x+4 ∀ x∈R
⇒(n−2)x2+8x+(n+4)>0
⇒n−2>0⇒n>2 …(i)
and D<0
⇒64−4(n−2)(n+4)<0⇒n2+2n−24>0⇒(n+6)(n−4)>0
⇒n∈(−∞,−6)∪(4,∞) …(ii)
From (i) and (ii), we get
⇒n>4
⇒n4>1
(C)→(R),(S)
(D) cos2x+2acosx+6a=17
⇒2cos2x+2acosx+6a−18=0⇒2(cosx−3)(cosx+3)+2a(cosx+3)=0
⇒(cosx+3)[2(cosx−3)+2a]=0
⇒cosx+3=0⇒cosx=−3 (not possible)
or 2(cosx−3)+2a=0
⇒cosx=3−a
We know that,
⇒−1≤cosx≤1⇒−1≤3−a≤1⇒−4≤−a≤−2⇒2≤a≤4
(D)→(R),(S)